The Effect of Alcohols on Red Blood Cell Mechanical Properties and Membrane Fluidity Depends on Their Molecular Size
نویسندگان
چکیده
The role of membrane fluidity in determining red blood cell (RBC) deformability has been suggested by a number of studies. The present investigation evaluated alterations of RBC membrane fluidity, deformability and stability in the presence of four linear alcohols (methanol, ethanol, propanol and butanol) using ektacytometry and electron paramagnetic resonance (EPR) spectroscopy. All alcohols had a biphasic effect on deformability such that it increased then decreased with increasing concentration; the critical concentration for reversal was an inverse function of molecular size. EPR results showed biphasic changes of near-surface fluidity (i.e., increase then decrease) and a decreased fluidity of the lipid core; rank order of effectiveness was butanol > propanol > ethanol > methanol, with a significant correlation between near-surface fluidity and deformability (r = 0.697; p<0.01). The presence of alcohol enhanced the impairment of RBC deformability caused by subjecting cells to 100 Pa shear stress for 300 s, with significant differences from control being observed at higher concentrations of all four alcohols. The level of hemolysis was dependent on molecular size and concentration, whereas echinocytic shape transformation (i.e., biconcave disc to crenated morphology) was observed only for ethanol and propanol. These results are in accordance with available data obtained on model membranes. They document the presence of mechanical links between RBC deformability and near-surface membrane fluidity, chain length-dependence of the ability of alcohols to alter RBC mechanical behavior, and the biphasic response of RBC deformability and near-surface membrane fluidity to increasing alcohol concentrations.
منابع مشابه
Effect of low dose X-ray on membrane fluidity of thalassemic red blood cells
Background: Chest X-ray is one of the examinations required for an annual health checkup. The interaction of radiation to the medium produces free radicals, which consequently causes biological changes either structural or properties of the cells. Whether the radiation from Chest X-ray upright technique affects the plasma membrane fluidity of thalassemic red blood cells (RBCs) is still unclear....
متن کاملRed cell membrane protein abnormalities as defined by sds-page among patients with anaemia in a west african region hospital practice
Background: Erythrocytes require an ability to deform and to withstand shear stress while negotiating the microcirculation. These properties are largely due to their excess surface area per volume and the characteristics of the membrane’s protein. Deficiencies of these proteins are associated with chronic haemolysis. Methods: This was a cross sectional study aimed at determining the prevalenc...
متن کاملmeasuring viscoelastic properties of Red Blood Cell using optical tweezers
Efforts have been made to study the behavior of complex materials in micrometer dimensions with various techniques. One of these methods is the use of optical tweezers for biophysical applications. Red blood cells, as the most abundant blood-forming cells, play an important role in the life of living organisms, and their unique mechanical properties are important. In this report, the study of s...
متن کاملBlood rheology and hemodynamics.
Blood is a two-phase suspension of formed elements (i.e., red blood cells [RBCs], white blood cells [WBCs], platelets) suspended in an aqueous solution of organic molecules, proteins, and salts called plasma. The apparent viscosity of blood depends on the existing shear forces (i.e., blood behaves as a non-Newtonian fluid) and is determined by hematocrit, plasma viscosity, RBC aggregation, and ...
متن کاملInvestigation into the Effects of Nanoparticle Size and Channel Depth on the Thermophysical Properties of Water Nanofluids in the Nanochannel Using Molecular Dynamics Simulation
In this research, an in-house code which uses the molecular dynamics method to study the flow of different nanofluids in the copper nanochannel and computes the thermo-physicals properties has been developed. The flow of nanofluids has been studied from hydro-thermally viewpoint and temperature jump at the wall has been applied. Parametric study to consider the effect of different parametric su...
متن کامل